The lowest place on Earth is subsiding—An InSAR (interferometric synthetic aperture radar) perspective
نویسندگان
چکیده
Since the early 1990s, sinkholes and wide, shallow subsidence features (WSSFs) have become major problems along the Dead Sea shores in Israel and Jordan. Sinkholes are readily observed in the field, but their locations and timing are unpredictable. WSSFs are often difficult to observe in the field. However, once identified, they delineate zones of instability and increasing hazard. In this study we identify, characterize, and measure rates of subsidence along the Dead Sea shores by the interferometric synthetic aperture radar (InSAR) technique. We analyze 16 SAR scenes acquired during the years 1992 to 1999 by the European Remote Sensing ERS-1 and ERS2 satellites. The interferograms span periods of between 2 and 71 months. WSSFs are observed in the Lisan Peninsula and along the Dead Sea shores, in a variety of appearances, including circular and elongate coastal depressions (a few hundred meters to a few kilometers in length), depressions in ancient alluvial fans, and depressions along salt-diapir margins. Phase differences measured in our interferograms *E-mail: [email protected]. correspond to subsidence rates generally in the range of 0–20 mm/yr within the studied period, with exceptional high rates that exceed 60 mm/yr in two specific regions. During the study period, the level of the Dead Sea and of the associated ground water has dropped by ;6 m. This water-level drop within an aquifer overlying fine-grained, marly layers, would be expected to have caused aquifer-system consolidation, resulting in gradual subsidence. Comparison of our InSAR observations with calculations of the expected consolidation shows that in areas where marl layers are known to compose part of the upper 30 m of the profile, estimated consolidation settlements are of the order of the measured subsidence. Our observations also show that in certain locations, subsidence appears to be structurally controlled by faults, seaward landslides, and salt domes. Gradual subsidence is unlikely to be directly related to the sinkholes, excluding the use of the WSSFs features as predictable precursors to sinkhole formation.
منابع مشابه
Application of Displacement Map Produced by Interferometric Synthetic Aperture Radar Technique in Height Datum Determination in the Subsidence Area
Damages due to subsidence such as destruction of watering system and agricultural fertile soil, wells increasing, damage to the roads, bridges and high ways and disordering in the water and gas supplying usually are irreparable and costly. As a huge amount bench marks of height network of Iran are placed in the subsidence area, changing their heights is a challenge for NCC. In this study, a new...
متن کاملA Review of the Three-dimensional Field Displacement Retrieval Methods Using Interferometric Synthetic Aperture Radar Observations (InSAR) With Emphasis on the Precision of Each of these Methods
Interferometric Synthetic Aperture Radar (InSAR) technology provides a useful tool for quantitatively measuring the deformation of the earth, influenced by natural factors (earthquake, subsidence, and landslide) and human factors (construction of structures, drilling, and the overexploitation of underground water aquifers). In this context, time-series analysis of radar images allows the monito...
متن کاملMEO SAR System Concepts and Technologies for Earth Remote Sensing
Next-generation interferometric synthetic aperture radar (InSAR) systems may provide the basis for establishing an earthquake-forecasting capability within a twenty-year time frame. Such systems would need to provide data with fine temporal resolution, so the system architecture would need to allow for wide-area coverage in order to minimize the effective interferometric repeat time. This paper...
متن کاملFrontiers of Radar Remote Sensing
all-weather, dayand-night imaging capability for mapping the Earth’s surface. Through interferometric synthetic aperture radar (InSAR) technique, radar imagery can be used to map Earth surface characteristics and measure land surface deformation at an unprecedented precision and spatial resolution. This article introduces the basics of radar and InSAR imaging, summarizes the revolution of InSAR...
متن کاملGlobal compilation of interferometric synthetic aperture radar earthquake source models: 2. Effects of 3‐D Earth structure
[1] We carry out long‐period surface wave centroid moment tensor (CMT) inversions using various global tomographic models and two different forward modeling techniques for 32 large earthquakes previously studied using interferometric synthetic aperture radar (InSAR) data. Since InSAR methods provide an alternative and independent way of locating and characterizing shallow continental earthquake...
متن کامل